Navigating the PLM Standards Universe CIMdata PLM Webinar Series

10 November 2016 #cimdatawebinar

Chris Gregory, PLM Success Practice Manager

Email: c.gregory@cimdata.com

Tel: +1.734.668.9922

Global Leaders in PLM Consulting www.ClMdata.com

Presenters' Profile

Chris Gregory

- Chris Gregory, Practice Manager, PLM Success
 - Chris Gregory comes to CIMdata with over 30 years of experience with major PLM solution providers, with broad experience and cross functional roles in services, product marketing, sales support, strategic alliances, business development and program management
 - Chris has led PLM implementations collectively representing over 100,000 users, over \$250 million in proven ROI
 - Chris currently manages CIMdata relationships with the CIMdata PLM Community members

CIMdata's Mission...

Strategic management consulting for competitive advantage in global markets

CIMdata is the leading independent global strategic management consulting and research authority focused exclusively on the PLM market.

We are dedicated to maximizing our clients' ability to design and deliver innovative products and services through the application of PLM.

CIMdata's Mission...

Our role in the PLM Economy for over 30 years

CIMdata is the leading independent global strategic management consulting and research authority focused exclusively on the PLM market.

We are dedicated to maximizing our clients' ability to design and deliver innovative products and services through the application of PLM.

PLM Standards Research

Topics for today's webcast

- Webinar Overview
- High Impact Standards Landscape
- Investment Strategies
- Individual PLM Standards Review

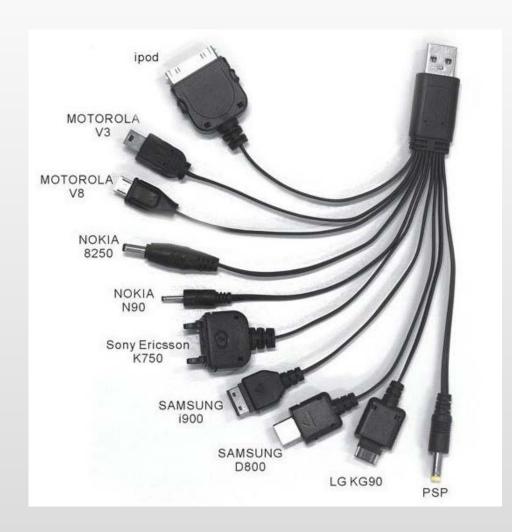
Questions?

Please use the GoToWebinar Question panel

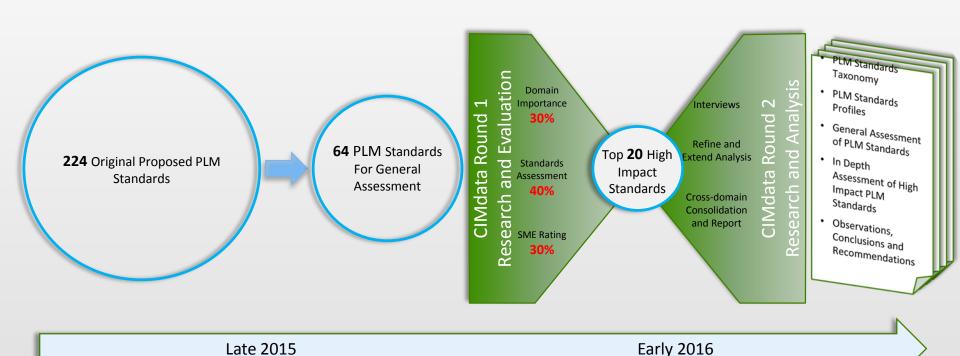
- Please enter questions in the GoToWebinar Question panel
- We will pause after major sections for questions and save 5 min at end, answer as many questions as time allows...
- Those that can't be answered live will be answered by email

Learning Objectives

What you should understand at the end of this session


- Which PLM standards are important for your business
- Why PLM standards are needed
- Where the major PLM standards are headed

Project Overview


Remember being sold "Standard Cell phone" connectors?

• Look all too familiar?

Project Overview

Process - Narrow focus to set of High Impact Standards, then deep dive

Round 1 Standards Evaluation Criteria

Standards Assessment - 40% (2 of 2)

Definitions of evaluation dimensions and assessment levels

Maturity: Completeness of scope

- 3 Multiple releases over several years; all elements of scope addressed
- 2 Substantial content in one or several releases
- 1 Pre-release

<u>Adoption</u>: Extent to which standard is used within industry and available in commercial products

- 3 Available in multiple commercial products and broadly (>50%) used within industry
- 2 At least one complete commercial offering and substantial adoption (>10-20%) within industry
- 1 Limited or no adoption within industry

<u>Customer Requirement</u>: Standard is a stated requirement in customer (e.g.. DoD or FAA) contract for deliverables format

- 3 Comprehensive or mandatory
- 2 Occasional or optional
- 1 Not required

Level of Backing: Extent to which standards development and adoption is supported by industry and solution providers

- 3 Broad and deep contribution of resources
- 2 Moderate contribution of resources
- 1 Nascent or orphan

Rate of Progress: Rate of standards development as evidenced by maturation and/or release schedule

- 3 History of releases with major incremental content
- 2 Moderate (i.e. average) release schedule and content
- 1 Infrequent releases with modest content or finalized

Round 2 Standards Evaluation Criteria

Definitions of evaluation dimensions and assessment levels

<u>Degree of Openness</u>: Degree to which standard is available to the general public and and its definition and maintenance is controlled by public consensus.

- 5 Full open, published by internationally recognized standards body
 - 2, 3, 4 Increasing levels of openness
 - 1 Standard not yet published, or controlled by vendor

<u>Interchange verification</u>: Extent to which standard has been verified across platforms/applications. Possibly with standard schema

- 5 Comprehensive collection of tools to verify input/output consistency
- 2, 3, 4 Increasing levels of interchange verification
- 1 No available tools

Key Influencers: Key standard committee members, and the industry and organizations that are represented

- 5 Committee contains broadest range of key influencers, representing several organizations, each from several industries
- 2, 3, 4 Increasing broad number and diversity of influencers
- 1 Limited to one or two influencers, within one or two organizations

Adoption by Industry: Extent to which standard is used within industry

- 5 Widespread adoption by multiple industries
- 2, 3, 4 Increasing levels of adoption
- 1 Limited or no adoption

Adoption by Software Providers: Extent to which standard is available in commercial PLM application products

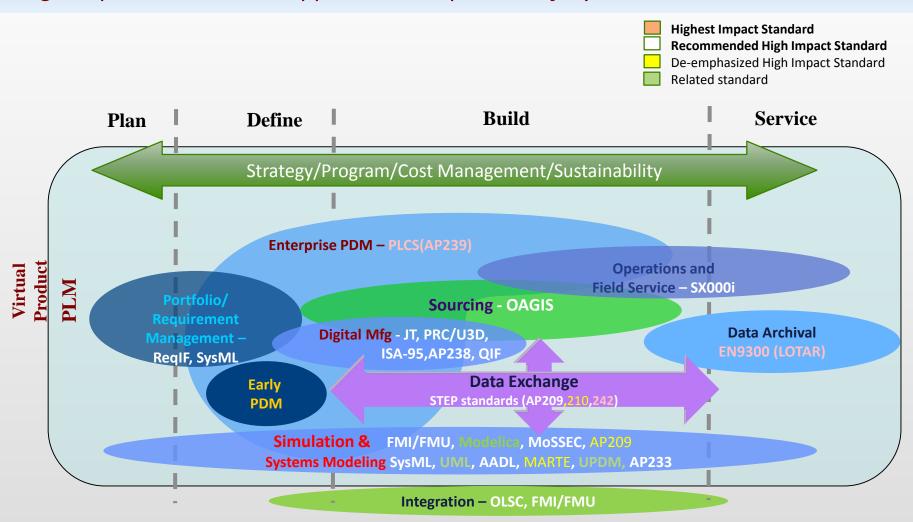
- 5 Widespread adoption by multiple COTS offering
- 2, 3, 4 Increasing levels of adoption
- 1 Limited or no adoption

Adoption by Standards solution providers: Extent to which standard implementation solutions are available from standards solution providers (ProSTEP, Theorem, International TecheGroup (ITI), Modelon, etc.)

- 5 Widespread adoption by both standards providers and standard solution providers
- 2, 3, 4 Increasing levels of adoption
- 1 Limited or no adoption

<u>Collaboration between software providers and standards solution</u> <u>providers</u>: Extent to which PLM software providers collaborate with standards solution providers.

- 5 High degree of collaboration Excellent working relationship between parties
- 2, 3, 4 Increasing levels of bi-lateral collaboration
- 1 Limited or no collaboration no solution providers cooperation or delayed availability



PLM Standards Research

Topics for today's webcast

- Webinar Overview
- High Impact Standards Landscape
- Investment Strategies
- Individual PLM Standards Review

High impact standards mapped into the product lifecycle

Leading Providers for High Impact Standards

Leading Solution Providers & Industrial Organizations working with each

		Leading	Organizations	
Domain	High Impact Standard	Solution Providers	Industrial Firms	Comment
MBSE				
	FMI/FMU	Numerous M&S software providers	Widespread automotive use	
	SysML	Siemens PLM (LMS), NoMagic, PTC (ATEGO)	Large A&D firms (Boeing, Airbus etc.), NASA/JPL	Early stage COTS productization
	MARTE	ignore	ignore	Ignore in favor of AADL, SysML
	AADL	CMU/SEI	Boeing	
	MoSSEC	Dassault, Siemens PLM, MSC, Eurostep	Airbus	R&D phase, not published standard
	ISO 10303 Part 209	Jotne	LM Aerospace	
	ISO 10303 Part 233	Siemens PLM, IBM Rational	Large A&D firms (Boeing, Airbus etc.)	
MBD				
	ISO 10303 Part 210	No COTS implementation	None	ignore in favor of defacto industry stds.
	ISO 10303 Part 238	No COTS implementation	GM, Boeing, Siemens	
	ISO 10303 Part 242 ed1 & ed2	PLM providers are working on ed2 implem	Large A&D firms (Boeing, Airbus etc.)	
Advanced Mfg & Robotics				
	QIF	Siemens PLM	LM, Honeywell	
PLM Data				
	ReqIF	Siemens PLM, PTC, IBM Rational	German Automotive firms	
	VDA 4968 VEC KBL	ignore	ignore	Only in use with German Automakers
	OSLC	IBM, Siemens PLM, PTC, Aras	Numerous	
	PRC/U3D	Siemens PLM	Numerous	
	ISO 140306 JT V1&V2	Siemens PLM	Numerous	
	ISO 10303 Part 239 (PLCS)	Eurostep, PDES Inc.	Large A&D firms (Boeing, Airbus etc.)	
PLM Process Domain				
	EN9300-120 ed1 (LOTAR)	No COTS implementation	Large A&D firms (Boeing, Airbus etc.)	Draft standard, in development
Domain Edges				
	ISA-95 (MES)	stomized implementations by MES provide	Consumer Package Goods (CPG) - Mars, Nestle	
	OAGIS (ERP)	All major ERP providers, no PLM providers	Widespread industry A2A, B2B use	
	SX1000i (Logistics Support)	No COTS implementation	Widespread A&D industry backing	Draft standard, in development

NOTE: Above list is NOT exhaustive, but highlighted from CIMdata research notes.

3 March 2016 - CIMdata Confidential

Brief Pause for Questions....

Two minute pause for questions before go on...

 Those that can't be answered live will be answered by email

Mapped into the PLM standards taxonomy (1 of 6)

Product Domain (1 of 2)

	Dro	duct Development Process		Product To	echnology	
	110	duct Development Flocess	Mechanical	Electrical	Software	Mechatronics
		Requirements Modeling & Traceability	SysML AADL	SysML AADL	SysML AADL	SysML AADL
		Modeling & Simulation - Architectural (Functional, Logical)	SysML AADL		AADL	SysML AADL
ineering		Modeling & Simulation - Physical (0D, 1D)	FMI/FMU 10303	<u>FMI/FMU</u>	<u>FMI/FMU</u>	<u>FMI/FMU</u>
ems Eng	Definition	Detailed Design	Part 209			
sed Syst		Manufacturing Engineering	10303 10303 AP242	10303 Part 210		
Model-Based Systems Engineering	Model-Base	Component Verification & Validation	<u>182</u>			
2		Advanced Manufacturing & Robotics (AMR)	tbd	tbd	tbd	
		Sub-system and System Verification and Validation	FMI/FMU			FMI/FMU

- High
- Med High
- Medium
- Low

Domain importance determined by CIMdata expert consensus

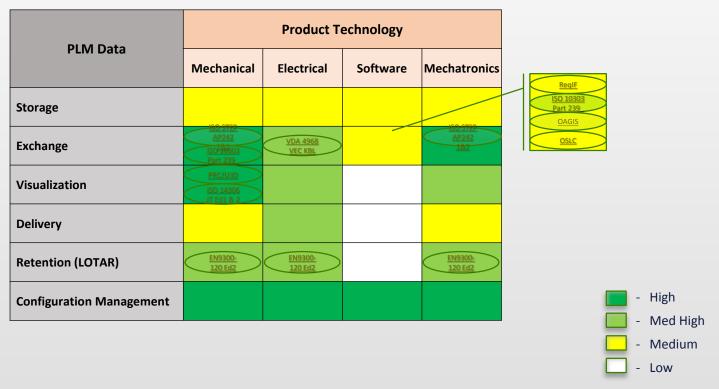
Mapped into the PLM standards taxonomy (2 of 6)

Product Domain (2 of 2)

Advanced Manufacturing & Robotics (AMR)		Deployment		Scheduled Maintenance	
Process Planning		Deployment		Logistics Support	
Production Assets		Training		Provisioning	
Work Instructions	QIF	Technical Publications		Operational & Maintenance Feedback	
Product Quality Metrics		Maintenance Procedures		Order Administration	
Sub-Systems & System Verification & Validation		Support		Disposal	
Lab/Ground	FMI/FM U	Technical Publications		Materials - Radiologicals	
Field/Flight	FMI/FM U	Maintenance Repair and Overhaul (MRO)			

Mapped into the PLM standards taxonomy (3 of 6)

Product Domain (2 of 2)


Advanced Manufacturing & Robotics (AMR)		Deployment		Scheduled Maintenance	
Process Planning		Deployment		Logistics Support	<u>SX000i</u>
Production Assets		Training		Provisioning	
Work Instructions	QIF	Technical Publications		Operational & Maintenance Feedback	
Product Quality Metrics		Maintenance Procedures		Order Administration	
Sub-Systems & System Verification & Validation		Support		Disposal	
Lab/Ground	FMI/FM U	Technical Publications		Materials - Radiologicals	
Field/Flight	FMI/FM U	Maintenance Repair and Overhaul (MRO)			

Mapped into the PLM standards taxonomy (4 of 6)

PLM Domain (1 of 2)

Mapped into the PLM standards taxonomy (5 of 6)

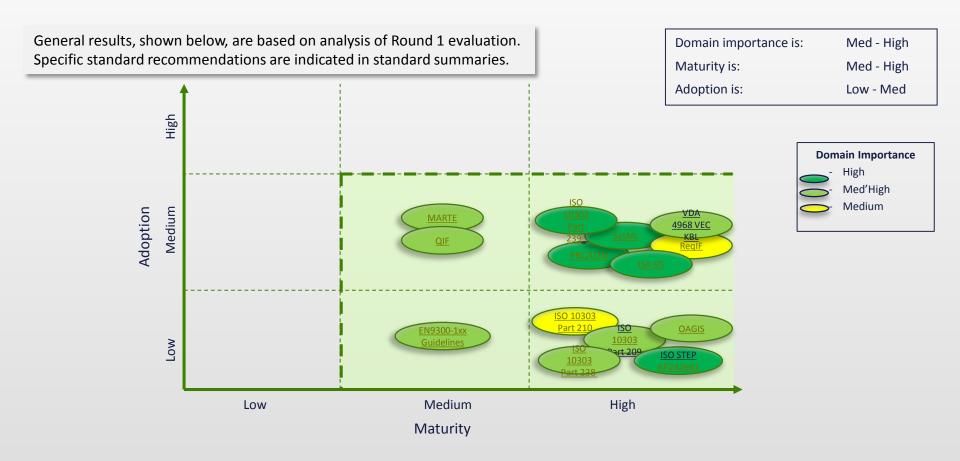
PLM Domain (2 of 2)

PLM Process		PLM Process		
Configuration Management	1 <u>30</u> 10303 Part 233	Simulation Process and Data Mgt (SPDM)	Mossec	
Variance Management		Physical Test Data Management	Mossec	
Configuration Status Accounting		Security & Access Control		
Change Management		Data Distribution		
Master Data Management (MDM)		Work Flow		
Application Lifecycle Mgt (ALM)		Analytics & Reporting		

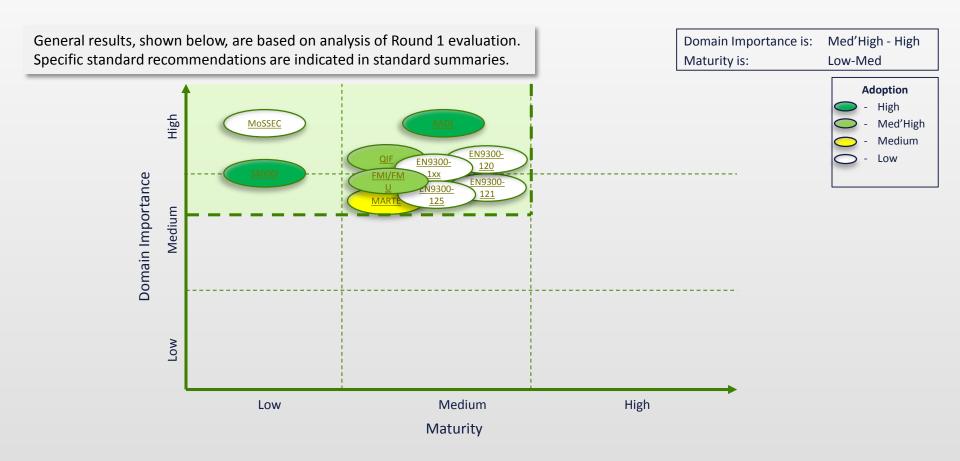
Mapped into the PLM standards taxonomy (6 of 6)

PLM Domain Edges

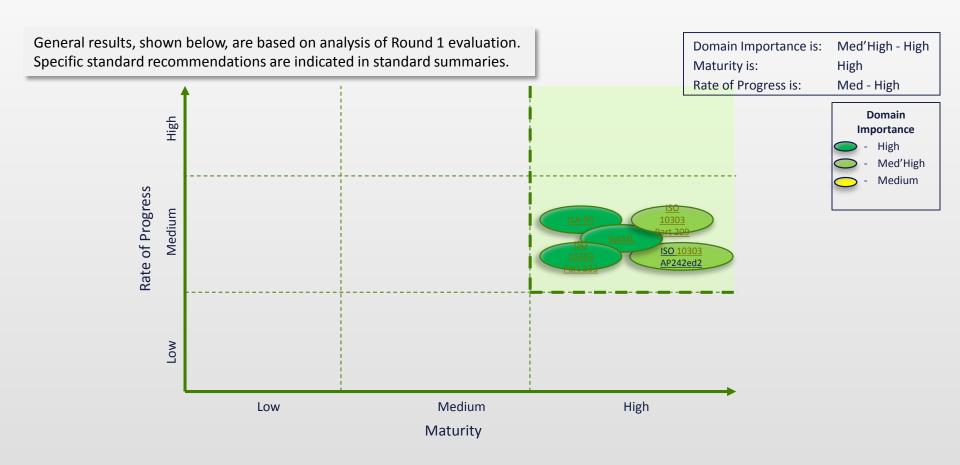
Business Process	Business System		
Purchasing	CRM		
Planning	MRP		
Accounting	ERP	<u>OAGIS</u>	
Finance	MES	ISA-95	
Quality			
Inventory			
Asset Management			

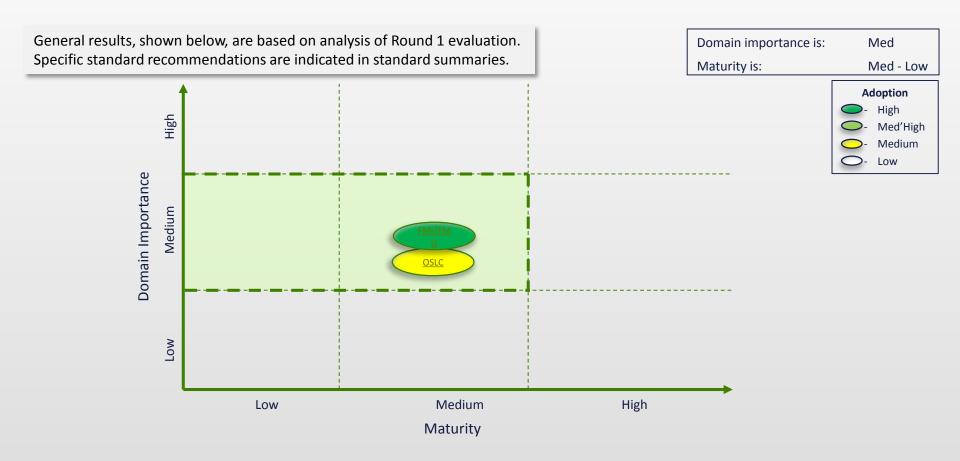


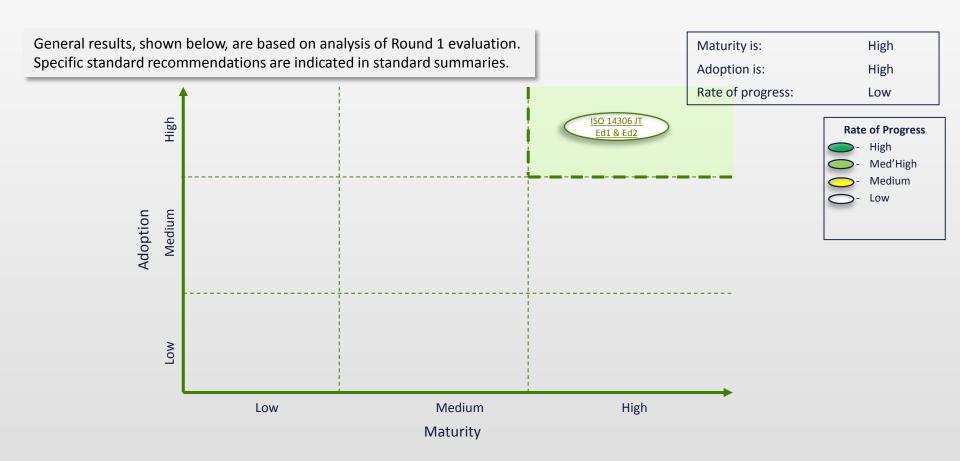
PLM Standards Research


Topics for today's webcast

- Webinar Overview
- High Impact Standards Landscape
- Investment Strategies
- Individual PLM Standards Review


Promote adoption of standards with high maturity and low adoption (1 of 5)


Participate in dvlp. of standards with low maturity but high importance (2 of 2)


Participate in dvlp. of standards w/high maturity but w/high rate of progress (3 of 5)

Track dvlp. of standards of medium importance w/medium to low maturity (4 of 5)

No action on standards that have high maturity & high adoption – "oxygen" (5 of 5)



Brief Pause for Questions....

Two minute pause for questions before go on...

 Those that can't be answered live will be answered by email

PLM Standards Research

Topics for today's webcast

- Webinar Overview
- High Impact Standards Landscape
- Investment Strategies
- Individual PLM Standards Review

High Impact PLM Standards

One slide summary reference for each standard, structured by taxonomy

- MBSE Domain
 - FMI/FMU
 - SysML
 - MARTE
 - AADL
 - Mossec
 - ISO 10303 Part 209
 - ISO 10303 Part 233
- MBD Domain
 - ISO 10303 Part 210
 - ISO 10303 Part 238
 - ISO 10303 Part 242 ed1&2
- Advanced Manufacturing & Robotics
 - QIF

- PLM Data Domain
 - ReqIF
 - VDA 4968 VEC KBL
 - OSLC
 - PRC/U3D
 - ISO 14306 JT V1&V2
 - ISO 10303 Part 239 (PLCS)
- PLM Process Domain
 - EN9300-120 ed2 (LOTAR)
- Domain Edges- Business Systems
 - <u>ISA-95</u> (MES)
 - OAGIS 10 (ERP)
- Domain Edges Logistics
 Support
 - SX000i

ISO 10303 Part 242 ed1 & ed2

Managed model-based 3D engineering

- Gaps and Overlaps
 - Currently lacking mature COTS support, although improving
- Future Trends
 - Part 242 ed2 being worked and projected for Sept 2017 ratification

- Open, ISO STEP framework
- Mature; even after only 1 year since Part
 242 includes Part 203 and Part 214
- Extensive attention paid to MBD when ed1 defined

STRENGTHS

WEAKNESSES

Maturity

30%

Relatively new (ed1 dated 12/01/2014)

Cust

Requirement

10%

Level of

backing

10%

Rate of

progress

20% 2

Limited COTS implementations

Adoption

30%

OPPORTUNITIES

- Identify where currently using Part 203 / Part 214 and begin transition to Part 242
- Work on ed2 to guide standard for wire harness, 3D printing support, and composites support

THREATS

- Many use cases can be handled by lightweight 3D model formats (JT and 3D PDF)
- Alternate wire harness standard in VDA 4968 strongly backed by automotive industry

<u>Part 242 Standard</u> STEP AP 242 Project Home Page

Degree of Openness		Key Company Influencers			Standards	Collaboration between S/W and standards
5	5	4	4	3	5	5

ISO 10303 Part 239

Product Lifecycle Support (PLCS) with **D**ata **Ex**change Specification**s** (DEXs)

- Gaps and Overlaps
 - Is a broad integration model - deliberately overlaps with many standards
 - Complements AP242 and others
 - Overlap with OAGIS for supply chain requirements
- Future Trends
 - PLCSlib DEX documented with SysML/XML (EuroSTEP)
 - Cloud PLM support for PLCS

ST		_			_		7 -
	_	_ 1	V .			_	
		_		_			
							_

- Open, ISO STEP framework
- Mature, with first release in 2005
- PLCS harmonizes data from requirements to support
- Required by French, Swede, and Norwegian defense industries, and for all DoD product information delivery thru DLA SPOE.

OPPORTUNITIES

- PLCS support for OAGIS 10 for SCM
- Creation of downloadable "PLCSlibs" will expand commercial adoption

Maturity	Adoption	Cust	Level of	Rate of	
iviaturity	Adoption	Requirement	backing	progress	
30%	30%	10%	1 0%	20%	
3 2		3	2	1	

WEAKNESSES

 Cost/time of DEX creation inhibits widespread commercial adoption

THREATS

None forecasted

AIA Background Boeing/EuroSTEP PLCS Web Services

DEX Overview

Degree of Openness	Interop Verification	Key Company Influencers			Standards	Collaboration between S/W and standards
5	3	4	3	2	2	1

EN9300-1XX (120)

LOTAR 3D CAD with PMI (graphics only)

Gaps and Overlaps

- Pre-requisites are ISO 10303 Part 203, 214, 242
- Competition with JT and 3D PDF

Future Trends

- Guided by ISO 10303Part 242 definition
- Support for -121, -125

ST	- 6.1		
	- 1	_	
			_

- Lotar International supported by AIA and ASD
- Based on ISO 10303 formats
- •120 ED1 released and in production use in multiple member companies

OPPORTUNITIES

 Continue to work with LOTAR international, ProSTEP, ATA and ASD to influence and define the related standards

WEAKNESSES

Adoption

30%

• Only polyline portion currently published

Cust

Requirement

10%

3

Level of

backing

10%

Rate of

progress

20%

2

- Unclear if any COTS implementations
- •120 only covers visualization, "semantic" or Machine Consumable 121e1 release planned 6/2016, 121e2 12/2017

THREATS

Maturity

30%

- Semantic information exists in CAD, and is being used via direct access so standard adoption may be slowed
- Changes to definition

http://www.lotar-international.org/lotar-workgroups/lotar-3d-cad-with-pmi.html

Degree of Openness		Key Company Influencers		Adoption by SW providers	Adoption by	Collaboration between S/W and standards
5	5	4	2	3	4	5

FMI/FMU

Functional Mock-up Interface-Interoperability & Co-Simulation of Dynamic Models

- Gaps and Overlaps
 - Non-causal connectors
 - Better coupling of 3D CAE models with dynamic system models
- **Future Trends**
 - Standard systems structure parameterization (SSP) of FMUs in systems models
 - Simulate complex cyberphysical systems & "systems of systems" containing multiple/many FMUs (scale)

			_	
	_ //	1G		1.9
\mathbf{J}				

- Innovative & game changing open source standard for behavior model interoperability and physics-bsed co-simulation for MBSE
- Executable FMUs do not require licenses of the underlying solvers such as Matlab/Simulink
- Supported by 81 COTS tools today & growing
- Use in auto industry & energy/power(Europe)

OPPORTUNITIES

- Integrate with/enable other standards such as AUTOSAR, SAE 26262, DO178 and LOTAR
- Enable cross-domain MBSE for complex cyberphysical systems (software, electronics, hardware, hydraulics, etc.) with SysML
- Leverage with emerging IoT initiatives and standards - digital twin enablement

WEAKNESSES

Adoption

35%

Maturity

30%

• Standard is still relatively new and immature but is growing/evolving very rapidly

Cust

Requirement

25%

2

Level of

backing

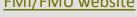
50%

Rate of

progress

60%

3


• Features need to be expanded to address the specific requirements of other applications and industry segments such as High-Tech and IoT

THREATS

- Standards committee currently dominated by **European Modelica community**
- FMI/FMU (Modelica) standard being driven solely by automotive industry & EU research \$\$

FMI/FMU website

Degree of Openness	Interop Verification	Key Company Influencers		Adoption by SW providers	Standards	Collaboratio n between S/W and Standards
4	3	4	3	4	5	4

OMG SysML

General purpose visual modeling language for systems engineering applications

Gaps and Overlaps

- Overlap with other standards for SE/MBSE (STEP AP233/ AP239, UPDM) and modeling tools that are established and widely used in the software development domain such as UML and AADL
- MOF & Diagram info not readily consumable by other systems
- Overlaps with other SE tools for Reqs and Arch/Info modeling

Future Trends

 Very murky usage picture at present outside of Aerospace & Defense, research organizations, some Medical Device segments

CT	DE	NI	СТ	LIC

- Based on very mature UML standard, with open source access and support model
- INCOSE efforts began in 2003, continuing with most recent OMG release in Sept 2015
- Over 10 commerical s/w implementations

OPPORTUNITIES

- Adoption of SysML as a core systems model language by the major PLM software vendors
- Increasing efforts by Simulation & Analytics vendors to provide COTS support for SysML model data as inputs to systems level M&S capabilities for functional behavior predictions and requirements V&V

www.omg.org ; www.omgsysml.org www.sysML.org SysML forum

Maturity	Adoption	Cust Requirement	Level of backing	Rate of progress
40%	15%	20%	20%	20%
2	2	2	2	2

WEAKNESSES

- Modeling functionality incomplete/missing
- Difficult to learn and use for average design engineers not steeped in SE/MBSE practices
- Lack of adoption by industry outside of very large OEMs, primarily in Aerospace/Defense
- Work force deployment challenge No COTS
 PLM-integrated offerings yet (some in process)

THREATS

- MS Office suite is still most widely used tools for SE-related activities (easy to use, low cost)
- ALM vendors continue to use & promote UML as the preferred tool for software & electronics
- PLM vendors have not yet embraced SysML as THE common data model for conceptual systems development (RFLP) vs. traditional

Degree of Openness	Interop Verification	Key Company Influencers	Adoption by Industry		Adoption by Standards Vendors	Collaboratio n between S/W and Standards
4	2	2	2	3	2	2

Open Services for Lifecycle Collaboration (OSLC)

Standardize tool integration - Loosely-coupled, Heterogeneous integration arch.

Gaps and Overlaps

- Gap No enforcement mechanism exists for compliance testing
- Overlap with competing standards:
 - OMG DDS
 - <u>Linked Data</u> (W3C)
 - MQTT (IBM IoT standard)

Future Trends

- Significant progress planned in 2016
 - Numerous solution provider offerings with OSLC
 - New domains planned

CT	D		ГНС

- Strong industrial and solution provider backing, across multiple industries
- Secret sauce for ALM | PLM integration
- IoT enablement for application | application integrations

OPPORTUNITIES

- Extend OSLC into Change | Configuration management, other integration domains
- Extend OSLC into expensive, proprietary PLM | ERP integration domain

iviaturity	Adoption	Requirement	backing	progress
30%	30%	10%	1 0%	20%
2	2	3	3	3
		•		-

Level of

Rate of

WEAKNESSES

 No enforcement mechanism for compliance testing of solution provider OSLC implementations

THREATS

Replacement cost of existing point-to-point integrations

http://open-services.net/specifications http://www.oasis-oslc.org/

Degree of Openness		Key Company Influencers		Adoption by SW providers	Standards	Collaboration between S/W and standards
4	5	5	4	3	4	5

OAGIS 10

Standardized Business Objects (XML) for supply chain transactions

- Gaps and Overlaps
 - Overlap/complimentsPLCS
 - OAGIS supply chain
 - PLCS technical domain
 - Overlap in supported message types
- Future Trends
 - Cloud PLM support for PLCS, OAGIS – OAGIS 10.2

STRENGTHS

- Strong ERP, HR and financial implementations.
 - Native support with INFOR (ION)
 - Planned support with Oracle Fusion
- UK MoD standardize on OAGIS for eBusiness
- Recent OAGIS 10 release Sept 2015

OPPORTUNITIES

• Harmonize PLCS/OAGIS standards efforts to insure seamless interchange

Maturity	Adoption	Requirement	backing	progress
30%	30%	10%	10%	20%
3	1	3	2	2

WEAKNESSES

- Overlap/possible conflicts with PLCS on supply chain objects.
- No identifiable PLM implementations

THREATS

None noted

OAGIS Overview
OAGIS 10.1 download

Degree of Openness		Key Company Influencers		Adoption by SW providers	Standards	Collaboration between S/W and standards
5	5	5	3	3	3	5

QIF

Integrated XML schema based standards for geometric tolerance testing within MBD

- Gaps and Overlaps
 - QIF V1.0 overlapped with DMIS V5.2 now resolved with V2.1
 - Compliments AP242
- Future Trends
 - ISO standardization
 - OOTB product availability

CT			GT	
	K 1	= N		

- Strong backing by CIMdata A&D IAG rated among top needs
- Rapid progress on standard, with strong international industry business backing.
- ANSI standard
- Use of Persistent ID's in QIF eliminates identifier conflicts

OPPORTUNITIES

- Cost reductions in manufacturing and for after-market service parts
- Enables Industry 4.0 Smart Manufacturing

$\mathbf{A}\mathbf{M}$	CNIE	SSES	S
VV	\prime \prime \prime	JJL.	•

Adoption

30%

 Emerging standard, not yet widely available OOTB. This is mitigated by rapid software provider support that is currently underway.

Cust

Requirement

10%

Level of

backing

10%

Rate of

progress

20%

3

THREATS

None apparent

Maturity

30%

QIFstandards.org

Degree of Openness	Interop Verification	Key Company Influencers		Adoption by SW providers	Standards	Collaboration between S/W and standards
5	5	4	3	3	5	5

Takeaways

What do you do with all this information?

- Insist on PLM Standards compliance from your PLM providers, if they are critical to your organization and its initiatives moving forward
- To the extent possible, participate in the standardization efforts for the PLM standard(s) that are *mission critical and practical* for you.
- Consider participation in CIMdata Industry Action Groups:
 - Aerospace & Defense PLM Action Group Contact Jim Roche j.roche@CIMdata.com
 - Industrial Action Group Contact Ed Martin <u>e.martin@CIMdata.com</u>
 - Medical Device Action Group—Contact Chuck Ditchendorf <u>c.ditchendorf@CIMdata.com</u>
 - Collaborate on best practice research and standard efforts

Balance Adherence with your Firm's PLM timeline

- Rigid standards compliance can asphyxiate any PLM initiative/upgrade
 - If a department wants to kill a particular initiative, it can do so easily to the detriment of the business' bigger picture.
 - It can be used as a tool of internal politics to the detriment of the business' bigger picture.
 - Triage (holistically and honestly) and determine which few standards are important to your overall PLM landscape and explore and steer options that way....with timeframes in mind.
- On the other hand, PLM providers' compliance comes in different potencies and commitments
 - PLM Solution providers typically resist standards unless they either made them up or they were a part of their original strategy.
 - Critical standards can also weed out potential suppliers. Be wary of "we'll be supporting this at some future release."

Q&A

Let's hear what's on your mind?

For More Information, Contact...

We look forward to hearing from you

Chris Gregory

Practice Manager, PLM Success

Tel: +1.734.668.9922

Email: c.gregory@CIMdata.com

Next CIMdata Leadership Webinar

- Please join us at 11am ET, 15 December 2016 for the next Complimentary CIMdata Educational Webinar
 - Want to Trust your Connected Intelligent Products? Deploy Knowledge Systems for Reliability Design
 - Dr. Venkatesh "Venki" Agaram, Director Quality & Reliability Engineering Practice, CIMdata
- Mark your calendars for 2017 CIMdata PLM Webinars
 - 2nd Thursday of each month @ 11am ET!

CIMdata

Strategic consulting for competitive advantage in global markets

3909 Research Park Drive Ann Arbor, MI 48108 USA Tel: +1.734.668.9922

Fax: +1.734.668.1957

Main Office - Europe

Oogststraat 20 6004 CV Weert, NL Tel:+31 (0) 495.533.666

Main Office - Asia-Pacific

Takegahana-Nishimachi 310-31 Matsudo, Chiba 271-0071 JAPAN

> Tel: +81.47.361.5850 Fax: +81.47.362.0472

www.CIMdata.com

Serving clients from offices in North America, Europe, and Asia-Pacific

